Download

Referensi baru ini menjelaskan aplikasi dari rekayasa struktural modern untuk struktur laut. Ini akan memberikan sumber tak ternilai untuk berlatih insinyur kelautan dan lepas pantai bekerja di minyak dan gas serta mereka yang belajar desain struktural laut. Cakupan kriteria kelelahan dan fraktur membentuk dasar untuk desain batas negara dan reassessment dari struktur yang ada dan membantu dengan menentukan bahan dan inspeksi persyaratan. Menggambarkan aplikasi dari penilaian risiko untuk industri kelautan dan lepas pantai, ini adalah buku praktis dan berguna untuk membantu insinyur melakukan desain struktural.

  • Presents prinsip desain struktural yang modern membantu insinyur memahami bagaimana melakukan desain struktur dengan analisis
  • Menawarkan teori praktis dan dapat digunakan untuk aplikasi industri teori kehandalan struktur

Daftar Isi

Preface ……………………………………………………………………………………………………………………………… v
Part I: Structural Design Principles
CHAPTER 1 INTRODUCTION …………………………………………………………………………………………… 3
Structural Design Principles ………………………………………………………………………………………….. 3
1.1.1 Introduction ………………………………………………………………………………………………………….. 3
1.1.2 Limit-State Design ………………………………………………………………………………………………… 4
1.2 Strength and Fatigue Analysis ……………………………………………………………………………………….. 5
1.2.1 Ultimate Strength Criteria ………………………………………………………………………………………. 6
1.2.2 Design for Accidental Loads …………………………………………………………………………………… 7
1.2.3 Design for Fatigue …………………………………………………………………………………………………. 8
1.3 Structural Reliability Applications ……………………………………………………………………………….. 10
1.3.1 Structural Reliability Concepts ……………………………………………………………………………… 10
1.3.2 Reliability-Based Calibration of Design Factor ……………………………………………………….. 12
1.3.3 Requalification of Existing Structures …………………………………………………………………… 12
1.4 Risk Assessment ………………………………………………………………………………………………………… 13
1.4.1 Application of Risk Assessment ……………………………………………………………………………. 13
1.4.2 Risk-Based Inspection (RBI) ………………………………………………………………………………… 13
1.4.3 Human and Organization Factors …………………………………………………………………………… 14
1.5 Layout of This Book …………………………………………………………………………………………………… 14
1.6 How to Use This Book ……………………………………………………………………………………………….. 16
1.7 References ………………………………………………………………………………………………………………… 16
CHAPTER 2 WAVE LOADS FOR SHIP DESIGN AND CLASSIFICATION …………………….. 19
2.1 Introduction ………………………………………………………………………………………………………………. 19
2.2 Ocean Waves and Wave Statistics ………………………………………………………………………………… 19
2.2.1 Basic Elements of Probability and Random Process …………………………………………………. 19
2.2.2 Statistical Representation of the Sea Surface …………………………………………………………… 21
2.2.3 Ocean Wave Spectra ……………………………………………………………………………………………. 22
2.2.4 Moments of Spectral Density Function …………………………………………………………………… 24
2.2.5 Statistical Determination of Wave Heights and Periods ……………………………………………. 26
2.3 Ship Response to a Random Sea ………………………………………………………………………………….. 26
2.3.1 Introduction ………………………………………………………………………………………………………… 26
2.3.2 Wave-Induced Forces …………………………………………………………………………………………… 28
2.3.3 Structural Response ……………………………………………………………………………………………… 29
2.3.4 Slamming and Green Water on Deck ……………………………………………………………………… 30
Ship Design for Classification ……………………………………………………………………………………… 32
2.4.1 Design Value of Ship Response …………………………………………………………………………….. 32
2.4.2 Design Loads per Classification Rules ……………………………………………………………………. 33
2.5 References ………………………………………………………………………………………………………………… 35
CHAPTER 3 LOADS AND DYNAMIC RESPONSE FOR OFFSHORE STRUCTURES …….. 39
3.1 General ……………………………………………………………………………………………………………………… 39
1.1
2.4
viii Contents
3.2 Environmental Conditions …………………………………………………………………………………………… 39
3.2.1 Environmental Criteria …………………………………………………………………………………………. 39
3.2.2 Regular Waves ……………………………………………………………………………………………………. 41
3.2.3 Irregular Waves …………………………………………………………………………………………………… 41
3.2.4 Wave Scatter Diagram …………………………………………………………………………………………. 42
3.3 Environmental Loads and Floating Structure Dynamics ………………………………………………….. 45
3.3.1 Environmental Loads …………………………………………………………………………………………… 45
3.3.2 Sea loads on Slender Structures …………………………………………………………………………….. 45
3.3.3 Sea loads on Large-Volume Structures …………………………………………………………………… 45
3.3.4 Floating Structure Dynamics …………………………………………………………………………………. 46
3.4 Structural Response Analysis ………………………………………………………………………………………. 47
3.4.1 Structural Analysis ………………………………………………………………………………………………. 47
3.4.2 Response Amplitude Operator (RAO) ……………………………………………………………………. 49
3.5 Extreme Values ………………………………………………………………………………………………………….. 53
3.5.1 General ………………………………………………………………………………………………………………. 53
3.5.2 Short-Term Extreme Approach ……………………………………………………………………………… 54
3.5.3 Long-Term Extreme Approach ……………………………………………………………………………… 58
3.5.4 Prediction of Most Probable Maximum Extreme for Non-Gaussian Process ……………….. 61
3.6 Concluding Remarks ………………………………………………………………………………………………….. 65
3.7 References ………………………………………………………………………………………………………………… 66
3.8 Appendix A Elastic Vibrations of Beams ……………………………………………………………………… 68
3.8.1 Vibration of A Springhiass System ………………………………………………………………………. 68
3.8.2 Elastic Vibration of Beams …………………………………………………………………………………… 69
CHAPTER 4 SCANTLING OF SHIP’S HULLS BY RULES ………………………………………………. 71
4.1 General ……………………………………………………………………………………………………………………… 71
4.2 Basic Concepts of Stability and Strength of Ships ………………………………………………………….. 71
4.2.1 Stability ……………………………………………………………………………………………………………… 71
4.2.2 Strength ……………………………………………………………………………………………………………… 73
4.2.3 Corrosion Allowance …………………………………………………………………………………………… 75
4.3 Initial Scantling Criteria for Longitudinal Strength …………………………………………………………. 76
4.3.1 Introduction ………………………………………………………………………………………………………… 76
4.3.2 Hull Girder Strength …………………………………………………………………………………………….. 77
4.4 Initial Scantling Criteria for Transverse Strength ……………………………………………………………. 79
4.4.1 Introduction ………………………………………………………………………………………………………… 79
4.4.2 Transverse Strength ……………………………………………………………………………………………… 79
4.5 Initial Scantling Criteria for Local Strength …………………………………………………………………… 79
4.5.1 Local Bending of Beams ………………………………………………………………………………………. 79
4.5.2 Local Bending Strength of Plates …………………………………………………………………………… 82
4.5.3 Structure Design of Bulkheads, Decks, and Bottom …………………………………………………. 83
4.5.4 Buckling of Platings …………………………………………………………………………………………….. 83
4.5.5 Buckling of Profiles …………………………………………………………………………………………….. 85
4.6 References ………………………………………………………………………………………………………………… 87
CHAPTER 5 SHIP HULL SCANTLING DESIGN BY ANALYSIS …………………………………….. 89
5.1 General ……………………………………………………………………………………………………………………… 89
5.2 Design Loads …………………………………………………………………………………………………………….. 89
5.3 Strength Analysis using Finite Element Methods ……………………………………………………………. 91
5.3.1 Modeling ……………………………………………………………………………………………………………. 91
5.3.2 Boundary Conditions …………………………………………………………………………………………… 93
5.3.3 Type of Elements ………………………………………………………………………………………………… 94
5.4 Fatigue Damage Evaluation …………………………………………………………………………………………. 95
5.3.4 Post-Processing …………………………………………………………………………………………………… 94
Contents ir
5.5 References ………………………………………………………………………………………………………………… 97
CHAPTER 6 OFFSHORE STRUCTURAL ANALYSIS ……………………………………………………… 99
6 . I Introduction ………………………………………………………………………………………………………………. 99
6.1 . 1 General ………………………………………………………………………………………………………………. 99
6.1.2 Design Codes ……………………………………………………………………………………………………… 99
6.1.3 Government Requirements ………………………………………………………………………………….. 100
6.1.4 CertificatiodClassification Authorities …………………………………………………………………. 100
6.1.5 Codes and Standards ………………………………………………………………………………………….. 101
6.1.6 Other Technical Documents ………………………………………………………………………………… 102
6.2 Project Planning ……………………………………………………………………………………………………….. 102
6.2.1 General …………………………………………………………………………………………………………….. 102
6.2.2 Design Basis ……………………………………………………………………………………………………… 103
6.2.3 Design Brief ……………………………………………………………………………………………………… 105
6.3 Use of Finite Element Analysis ………………………………………………………………………………….. 105
6.3.1 Introduction ………………………………………………………………………………………………………. 105
6.3.2 Stiffness Matrix for 2D Beam Elements ……………………………………………………………….. 107
6.3.3 Stifmess Matrix for 3D Beam Elements ……………………………………………………………….. 109
6.4 Design Loads and Load Application …………………………………………………………………………… 112
6.5 Structural Modeling ………………………………………………………………………………………………….. 114
6.5.1 General …………………………………………………………………………………………………………….. 114
6.5.2 Jacket Structures ………………………………………………………………………………………………… 114
6.5.3 Floating Production and Offloading Systems (FPSO) …………………………………………….. 116
6.5.4 TLP, Spar and Semi-submersible …………………………………………………………………………. 123
6.6 References ………………………………………………………………………………………………………………. 125
CHAPTER 7 LIMIT-STATE DESIGN OF OFFSHORE STRUCTURES ………………………….. 127
7.1 Limit State Design ……………………………………………………………………………………………………. 127
7.2 Ultimate Limit State Design ………………………………………………………………………………………. 128
7.2.1 Ductility and Brittle Fracture Avoidance ………………………………………………………………. 128
7.2.2 Plated Structures ………………………………………………………………………………………………… 129
7.2.3 Shell Structures …………………………………………………………………………………………………. 130
7.3.1 Introduction ………………………………………………………………………………………………………. 134
7.3.3 Fatigue Design ………………………………………………………………………………………………….. 137
7.4 References ………………………………………………………………………………………………………………. 138
7.3 Fatigue Limit State Design ………………………………………………………………………………………… 134
7.3.2 Fatigue Analysis ………………………………………………………………………………………………… 135
Part 11: Ultimate Strength
CHAPTER 8 BUCKLINGKOLLAPSE OF COLUMNS AND BEAM-COLUMNS ……………. 141
Buckling Behavior and Ultimate Strength of Columns ………………………………………………….. 141
8.1.1 Buckling Behavior …………………………………………………………………………………………….. 141
8.1.2 Peny-Robertson Formula ……………………………………………………………………………………. 143
8.1.3 Johnson-Ostenfeld Formula ………………………………………………………………………………… 144
8.2 Buckling Behavior and Ultimate Strength of Beam-Columns ………………………………………… 145
8.2.1 Beam-Column with Eccentric Load ……………………………………………………………………… 145
8.2.2 Beam-Column with Initial Deflection and Eccentric Load ………………………………………. 146
8.2.3 Ultimate Strength of Beam-Columns ……………………………………………………………………. 147
8.2.4
8.3.1
8.1
Alternative Ultimate Strength Equation – Initial Yielding ………………………………………. 148
Plastic Design of Beam-Columns ……………………………………………………………………………….. 148
Plastic Bending of Beam Cross-section ………………………………………………………………… 148
8.3
X Contents
8.3.2
8.3.3
8.4.1
8.4.2
Plastic Hinge Load …………………………………………………………………………………………….. 150
Plastic Interaction Under Combined Axial Force and Bending ………………………………… 150
8.4 Examples ………………………………………………………………………………………………………………… 151
Example 8.1: Elastic Buckling of Columns with Alternative Boundaty Conditions ……. 151
Example 8.2 Two Types of Ultimate Strength Buckling vs . Fracture ……………………… 153
8.5 References ………………………………………………………………………………………………………………. 154
CHAPTER9 BUCKLING ANDLOCALBUCKLINGOFTUBULARMEMBERS …………… 155
9.1 Introduction …………………………………………………………………………………………………………….. 155
9.1.1 General …………………………………………………………………………………………………………….. 155
9.1.2 Safety Factors for Offshore Strength Assessment …………………………………………………… 156
9.2.1 Test Specimens ………………………………………………………………………………………………….. 156
9.2.2 Material Tests ……………………………………………………………………………………………………. 158
9.2.3 Buckling Test Procedures …………………………………………………………………………………… 163
9.2.4 Test Results ………………………………………………………………………………………………………. 163
Theory of Analysis …………………………………………………………………………………………………… 169
9.3.1 Simplified Elasto-Plastic Large Deflection Analysis ………………………………………………. 169
9.3.2 Idealized Structural Unit Analysis ……………………………………………………………………….. 180
9.4 Calculation Results …………………………………………………………………………………………………… 186
9.4.1 Simplified Elasto-Plastic Large Deflection Analysis ………………………………………………. 186
9.4.2 Idealized Structural Unit Method Analysis ……………………………………………………………. 190
9.2 Experiments …………………………………………………………………………………………………………….. 156
9.3
9.5 Conclusions …………………………………………………………………………………………………………….. 194
9.6 Example ………………………………………………………………………………………………………………….. 195
9.7 References ………………………………………………………………………………………………………………. 196
CHAPTER 10 ULTIMATE STRENGTH OF PLATES AND STIFFENED PLATES …………… 199
10.1 Introduction …………………………………………………………………………………………………………….. 199
10.1.1 General …………………………………………………………………………………………………………….. 199
10.1.2 Solution of Differential Equation …………………………………………………………………………. 200
10.1.3 Boundary Conditions …………………………………………………………………………………………. 202
10.1.5 Correction for Plasticity ……………………………………………………………………………………… 204
10.2 Combined Loads ………………………………………………………………………………………………………. 205
10.2.1 Buckling – Serviceability Limit State …………………………………………………………………… 205
10.2.2 Ultimate Strength – Ultimate Limit State ……………………………………………………………… 206
10.3 Buckling Strength of Plates ……………………………………………………………………………………….. 207
10.4 Ultimate Strength of Un-Stiffened Plates …………………………………………………………………….. 208
10.4.1 Long Plates and Wide Plates ……………………………………………………………………………….. 208
10.4.2 Plates Under Lateral Pressure ……………………………………………………………………………… 209
10.4.3 Shear Strength …………………………………………………………………………………………………… 209
10.4.4 Combined Loads ……………………………………………………………………………………………….. 209
10.5 Ultimate Strength of Stiffened Panels …………………………………………………………………………. 209
10.5.1 Beam-Column Buckling ……………………………………………………………………………………… 209
10.5.2 Tripping of Stiffeners …………………………………………………………………………………………. 210
10.6 Gross Buckling of Stiffened Panels (Overall Grillage Buckling) …………………………………….. 210
10.7 References ………………………………………………………………………………………………………………. 210
CHAPTER 11 ULTIMATE STRENGTH OF CYLINDRICAL SHELLS …………………………….. 213
1 1.1 Introduction …………………………………………………………………………………………………………….. 213
11.1.1 General …………………………………………………………………………………………………………….. 213
11.1.2 Buckling Failure Modes ……………………………………………………………………………………… 214
11.2 Elastic Buckling of Unstiffened Cylindrical Shells ……………………………………………………….. 215
10.1.4 Fabrication Related Imperfections and In-Service Structural Degradation ………………… 202
Contents xi
11.2.1 Equilibrium Equations for Cylindrical Shells ………………………………………………………… 215
11.2.2 Axial Compression …………………………………………………………………………………………….. 216
11.2.3 Bending ……………………………………………………………………………………………………………. 217
11.2.4 External Lateral Pressure ……………………………………………………………………………………. 218
11.3 Buckling of Ring Stiffened Shells ………………………………………………………………………………. 219
1 1.3.1 Axial Compression …………………………………………………………………………………………….. 219
11.3.2 Hydrostatic Pressure …………………………………………………………………………………………… 220
11.3.3 Combined Axial Compression and Pressure ………………………………………………………….. 221
11.4 Buckling of Stringer and Ring Stiffened Shells …………………………………………………………….. 221
1 1.4.1 Axial Compression …………………………………………………………………………………………….. 221
1 1.4.2 Radial Pressure ………………………………………………………………………………………………….. 223
11.4.3 Axial Compression and Radial Pressure ……………………………………………………………….. 223
1 1.5 References ………………………………………………………………………………………………………………. 224
CHAPTER 12 A THEORY OF NONLINEAR FINITE ELEMENT ANALYSIS ………………….. 227
12.1 General ……………………………………………………………………………………………………………………. 227
12.2 Elastic Beam-Column With Large Displacements ………………………………………………………… 228
12.3 The Plastic Node Method ………………………………………………………………………………………….. 229
12.3.1 History of the Plastic Node Method ……………………………………………………………………… 229
12.3.2 Consistency Condition and Hardening Rates for Beam Cross-Sections …………………….. 230
12.3.3 Plastic Displacement and Strain at Nodes ……………………………………………………………… 233
12.4 Transformation Matrix ………………………………………………………………………………………………. 236
12.5 Appendix A: Stress-Based Plasticity Constitutive Equations ………………………………………….. 237
12.5.1 General …………………………………………………………………………………………………………….. 237
12.5.2 Relationship Between Stress and Strain in Elastic Region ………………………………………. 239
12.5.3 Yield Criterion ………………………………………………………………………………………………….. 240
12.5.4 Plastic Strain Increment ……………………………………………………………………………………… 242
12.5.5 Stress Increment – Strain Increment Relation in Plastic Region ……………………………….. 246
12.6 Appendix B: Deformation Matrix ………………………………………………………………………………. 247
12.7 References ………………………………………………………………………………………………………………. 248
CHAPTER 13 COLLAPSE ANALYSIS OF SHIP HULLS ………………………………………………….. 251
13.1 Introduction …………………………………………………………………………………………………………….. 251
13.2 Hull Structural Analysis Based on the Plastic Node Method ………………………………………….. 252
13.2.1 Beam-Column Element ………………………………………………………………………………………. 252
13.2.3 Shear Panel Element ………………………………………………………………………………………….. 257
13.2.4 Non-Linear Spring Element ………………………………………………………………………………… 257
13.2.5 Tension Tearing Rupture …………………………………………………………………………………….. 257
13.3 Analytical Equations for Hull Girder Ultimate Strength ………………………………………………… 260
13.3.1 Ultimate Moment Capacity Based on Elastic Section Modulus ……………………………….. 260
13.3.2 Ultimate Moment Capacity Based on Fully Plastic Moment ……………………………………. 261
12.3.4 Elastic-Plastic Stiffness Equation for Elements ……………………………………………………… 235
13.2.2 Attached Plating Element ……………………………………………………………………………………. 254
13.2.6 Computational Procedures ………………………………………………………………………………….. 259
13.3.3 Proposed Ultimate Strength Equations …………………………………………………………………. 263
13.4 Modified Smith Method Accounting for Corrosion and Fatigue Defects …………………………. 264
13.4.1 Tensile and Comer Elements ………………………………………………………………………………. 265
13.4.2 Compressive Stiffened Panels ……………………………………………………………………………… 265
13.4.3 Crack Propagation Prediction ………………………………………………………………………………. 266
13.4.4 Corrosion Rate Model ………………………………………………………………………………………… 267
13.5 Comparisons of Hull Girder Strength Equations and Smith Method ……………………………….. 269
13.6 Numerical Examples Using the Proposed Plastic Node Method ……………………………………… 271
13.6.1 Collapse of a Stiffened Plate ……………………………………………………………………………….. 271
xii Contents
13.6.2 Collapse of an Upper Deck Structure ……………………………………………………………………. 273
13.6.3 Collapse of Stiffened Box Girders ……………………………………………………………………….. 274
13.6.4 Ultimate Longitudinal Strength of Hull Girders …………………………………………………….. 276
13.6.5 Quasi-Static Analysis of a Side Collision ……………………………………………………………… 278
13.7 Conclusions …………………………………………………………………………………………………………….. 279
13.8 References ………………………………………………………………………………………………………………. 280
CHAPTER 14 OFFSHORE STRUCTURES UNDER IMPACT LOADS ……………………………… 285
14.1 General ……………………………………………………………………………………………………………………. 285
14.2 Finite Element Formulation ……………………………………………………………………………………….. 286
14.2.1 Equations of Motion …………………………………………………………………………………………… 286
14.2.3 Beam-Column Element for Modeling of the Struck Structure ………………………………….. 287
14.2.4 Computational Procedure ……………………………………………………………………………………. 287
14.3 Collision Mechanics …………………………………………………………………………………………………. 289
14.3.1 Fundamental Principles ………………………………………………………………………………………. 289
14.3.2 Conservation of Momentum ……………………………………………………………………………….. 289
14.3.3 Conservation of Energy ………………………………………………………………………………………. 290
14.4 Examples ………………………………………………………………………………………………………………… 291
14.4.1 Mathematical Equations for Impact Forces and Energies in ShiplPlafform Collisions … 29 1
14.4.2 Basic Numerical Examples …………………………………………………………………………………. 292
14.4.3 Application to Practical Collision Problems ………………………………………………………….. 298
14.5 Conclusions …………………………………………………………………………………………………………….. 303
14.6 References ………………………………………………………………………………………………………………. 303
CHAPTER 15 OFFSHORE STRUCTURES UNDER EARTHQUAKE LOADS ………………….. 305
15.1 General ……………………………………………………………………………………………………………………. 305
15.2 Earthquake Design as per API RP2A ………………………………………………………………………….. 305
15.3 Equations and Motion ……………………………………………………………………………………………….. 307
15.3.1 Equation of Motion ……………………………………………………………………………………………. 307
15.3.2 Nonlinear Finite Element Model ………………………………………………………………………….. 308
15.3.3 Analysis Procedure …………………………………………………………………………………………….. 308
15.4 Numerical Examples …………………………………………………………………………………………………. 308
15.5 Conclusions …………………………………………………………………………………………………………….. 313
15.6 References ………………………………………………………………………………………………………………. 314
14.2.2 Load-Displacement Relationship ofthe Hit Member ……………………………………………… 286
Part 111: Fatigue and Fracture
CHAPTER 16 MECHANISM OF FATIGUE AND FRACTURE ………………………………………… 317
16.1 Introduction …………………………………………………………………………………………………………….. 317
16.2 Fatigue Overview …………………………………………………………………………………………………….. 317
16.3 Stress-Controlled Fatigue ………………………………………………………………………………………….. 318
16.4 Cumulative Damage for Variable Amplitude Loading …………………………………………………… 320
16.5 Strain-Controlled Fatigue ………………………………………………………………………………………….. 321
16.6 Fracture Mechanics in Fatigue Analysis ………………………………………………………………………. 323
16.7 Examples ………………………………………………………………………………………………………………… 325
16.8 References ………………………………………………………………………………………………………………. 326
CHAPTER 17 FATIGUE CAPACITY … …………………………………………………………………………….. 329
17.1 S-N Curves ……………………………………………………………………………………………………………… 329
17.1.1 General …………………………………………………………………………………………………………….. 329
17.1.2 Effect of Plate Thickness ……………………………………………………………………………………. 33 1
Contents xiii
17.1.3 Effect of Seawater and Corrosion Protection …………………………………………………………. 331
17.1.4 Effect of Mean Stress …………………………………………………………………………………………. 331
17.1.5 Comparisons of S-N Curves in Design Standards …………………………………………………… 332
17.1.6 Fatigue Strength Improvement …………………………………………………………………………….. 335
17.1.7 Experimental S-N Curves ……………………………………………………………………………………. 335
17.2 Estimation of the Stress Range …………………………………………………………………………………… 336
17.2.1 Nominal Stress Approach ……………………………………………………………………………………. 336
17.2.2 Hotspot Stress Approach …………………………………………………………………………………….. 337
17.2.3 Notch Stress Approach ……………………………………………………………………………………….. 339
17.3 Stress Concentration Factors ……………………………………………………………………………………… 339
17.3.1 Definition of Stress Concentration Factors ……………………………………………………………. 339
17.3.2 Determination of SCF by Experimental Measurement ……………………………………………. 340
17.3.3 Parametric Equations for Stress Concentration Factors …………………………………………… 340
17.3.4 Hot-Spot Stress Calculation Based on Finite Element Analysis ……………………………….. 341
17.4 Examples ………………………………………………………………………………………………………………… 343
17.4.1 Example 17.1: Fatigue Damage Calculation ………………………………………………………….. 343
17.5 References ………………………………………………………………………………………………………………. 344
CHAPTER 18 FATIGUE LOADING AND STRESSES ………………………………………………………. 347
18.1 Introduction …………………………………………………………………………………………………………….. 347
18.2 Fatigue Loading for Ocean-Going Ships ……………………………………………………………………… 348
18.3 Fatigue Stresses ……………………………………………………………………………………………………….. 350
18.3.2 Long Term Fatigue Stress Based on Weibull Distribution ………………………………………. 350
18.3.1 General …………………………………………………………………………………………………………….. 350
18.3.3 Long Term Stress Distribution Based on Deterministic Approach ……………………………. 351
18.3.4 Long Term Stress Distribution – Spectral Approach ………………………………………………. 352
18.4 Fatigue Loading Defined Using Scatter Diagrams ………………………………………………………… 354
18.4.2 Mooring and Riser Induced Damping in Fatigue Seastates ……………………………………… 354
18.5 Fatigue Load Combinations ……………………………………………………………………………………….. 355
18.5.3 Fatigue Load Combinations for Offshore Structures ………………………………………………. 356
18.7 Concluding Remarks ………………………………………………………………………………………………… 361
18.8 References ………………………………………………………………………………………………………………. 361
CHAPTER 19 SIMPLIFIED FATIGUE ASSESSMENT …………………………………………………….. 363
19.1 introduction …………………………………………………………………………………………………………….. 363
19.3 Simplified Fatigue Assessment …………………………………………………………………………………… 365
19.3.1 Calculation of Accumulated Damage …………………………………………………………………… 365
19.3.2 Weibull Stress Distribution Parameters ………………………………………………………………… 366
19.4 Simplified Fatigue Assessment for Bilinear S-N Curves ……………………………………………….. 366
19.5 Allowable Stress Range …………………………………………………………………………………………….. 367
19.6 Design Criteria for Connections Around Cutout Openings …………………………………………….. 367
19.6.1 General …………………………………………………………………………………………………………….. 367
19.6.2 Stress Criteria for Collar Plate Design ………………………………………………………………….. 368
19.7 Examples ………………………………………………………………………………………………………………… 370
19.8 References ………………………………………………………………………………………………………………. 371
20.1 Introduction …………………………………………………………………………………………………………….. 373
18.4.1 General …………………………………………………………………………………………………………….. 354
18.5.1 General …………………………………………………………………………………………………………….. 355
18.5.2 Fatigue Load Combinations for Ship Structures …………………………………………………….. 355
18.6 Examples ………………………………………………………………………………………………………………… 357
19.2 Deterministic Fatigue Analysis …………………………………………………………………………………… 364
CHAPTER 20 SPECTRAL FATIGUE ANALYSIS AND DESIGN ……………………………………… 373
xiv Contents
20.1.1 General …………………………………………………………………………………………………………….. 373
20.1.2 Terminology ……………………………………………………………………………………………………… 374
20.2 Spectral Fatigue Analysis ………………………………………………………………………………………….. 374
20.2.1 Fatigue Damage Acceptance Criteria ……………………………………………………………………. 374
20.2.2 Fatigue Damage Calculated Using Frequency Domain Solution ………………………………. 374
20.3.2 Analysis Methodology for TimeDomain Fatigue of Pipelines ………………………………… 377
20.3.3 Analysis Methodology for Time-Domain Fatigue of Risers …………………………………….. 378
20.3.4 Analysis Methodology for Time-Domain Fatigue of Nonlinear Ship Response …………. 378
20.4.1 Overall Structural Analysis …………………………………………………………………………………. 379
20.4.2 Local Structural Analysis ……………………………………………………………………………………. 381
20.3 Time-Domain Fatigue Assessment ……………………………………………………………………………… 377
20.3.1 Application ……………………………………………………………………………………………………….. 377
20.4 Structural Analysis …………………………………………………………………………………………………… 379
20.5 Fatigue Analysis and Design ……………………………………………………………………………………… 381
20.5.1 Overall Design ………………………………………………………………………………………………….. 381
20.5.2 Stress Range Analysis ………………………………………………………………………………………… 382
20.5.3 Spectral Fatigue Parameters ………………………………………………………………………………… 382
20.5.4 Fatigue Damage Assessment ……………………………………………………………………………….. 387
20.5.5 Fatigue Analysis and Design Checklist …………………………………………………………………. 388
20.5.6 Drawing Verification …………………………………………………………………………………………. 389
20.6 Classification Society Interface ………………………………………………………………………………….. 389
20.6.1 Submittal and Approval of Design Brief ……………………………………………………………….. 389
20.6.2 Submittal and Approval of Task Report ……………………………………………………………….. 389
20.6.3 Incorporation of Comments from Classification Society …………………………………………. 389
20.7 References ………………………………………………………………………………………………………………. 389
CHAPTER 21 APPLICATION OF FRACTURE MECHANICS …………………………………………. 391
21.1 Introduction …………………………………………………………………………………………………………….. 391
21.1.1 General …………………………………………………………………………………………………………….. 391
21.1.2 Fracture Mechanics Design Check ……………………………………………………………………….. 391
21.2 Level 1: The CTOD Design Curve ……………………………………………………………………………… 392
21.2.1 The Empirical Equations …………………………………………………………………………………….. 392
21.2.2 The British Welding Institute (CTOD Design Curve) …………………………………………….. 393
21.3 Level 2: The CEGB R6 Diagram ………………………………………………………………………………… 394
21.4 Level 3: The Failure Assessment Diagram (FAD) ………………………………………………………… 395
21.5 Fatigue Damage Estimation Based on Fracture Mechanics ……………………………………………. 396
21.5.1 Crack Growth Due to Constant Amplitude Loading ……………………………………………….. 396
21.5.2 Crack Growth due to Variable Amplitude Loading ………………………………………………… 397
21.6 Comparison of Fracture Mechanics & S-N Curve Approaches for Fatigue Assessment …….. 397
21.7 Fracture Mechanics Applied in Aerospace, Power Generation Industries ………………………… 398
2 1.8 Examples ………………………………………………………………………………………………………………… 399
21.9 References ………………………………………………………………………………………………………………. 399
CHAPTER 22 MATERIAL SELECTIONS AND DAMAGE TOLERANCE CRITERIA …….. 401
22.1 Introduction …………………………………………………………………………………………………………….. 401
22.2 Material Selections and Fracture Prevention ………………………………………………………………… 401
22.2.1 Material Selection ……………………………………………………………………………………………… 401
22.2.2 Higher Strength Steel …………………………………………………………………………………………. 402
22.2.3 Prevention of Fracture ………………………………………………………………………………………… 402
22.3 Weld Improvement and Repair …………………………………………………………………………………… 403
22.3.1 General …………………………………………………………………………………………………………….. 403
22.3.2 Fatigue-Resistant Details ……………………………………………………………………………………. 403
22.3.3 Weld Improvement …………………………………………………………………………………………….. 404
Contents xv
22.3.4 Modification of Residual Stress Distribution …………………………………………………………. 405
22.3.5 Discussions ……………………………………………………………………………………………………….. 405
22.4 Damage Tolerance Criteria ………………………………………………………………………………………… 406
22.4.1 General …………………………………………………………………………………………………………….. 406
22.4.2 Residual Strength Assessment Using Failure Assessment Diagram ………………………….. 406
22.4.3 Residual Life Prediction Using Paris Law …………………………………………………………….. 407
22.4.4 Discussions ……………………………………………………………………………………………………….. 407
22.5 Non-Destructive Inspection ……………………………………………………………………………………….. 407
22.6 References ………………………………………………………………………………………………………………. 408
Part IV: Structural Reliability
CHAPTER 23 BASICS OF STRUCTURAL RELIABILITY ……………………………………………….. 413
23.1 Introduction …………………………………………………………………………………………………………….. 413
23.2 Uncertainty and Uncertainty Modeling ……………………………………………………………………….. 413
23.2.1 General …………………………………………………………………………………………………………….. 413
23.2.2 Natural vs . Modeling Uncertainties ……………………………………………………………………… 414
23.3 Basic Concepts ………………………………………………………………………………………………………… 415
23.3.1 General …………………………………………………………………………………………………………….. 415
23.3.2 Limit State and Failure Mode ………………………………………………………………………………. 415
23.3.3 Calculation of Structural Reliability …………………………………………………………………….. 415
23.3.4 Calculation by FORM ………………………………………………………………………………………… 419
23.3.5 Calculation by SOW ………………………………………………………………………………………… 420
23.5 System Reliability Analysis ……………………………………………………………………………………….. 421
23.5.1 General …………………………………………………………………………………………………………….. 421
23.5.2 Series System Reliability ……………………………………………………………………………………. 421
23.5.3 Parallel System Reliability ………………………………………………………………………………….. 421
23.6 Combination of Statistical Loads ………………………………………………………………………………… 422
23.6.1 General …………………………………………………………………………………………………………….. 422
23.6.2 Turkstra’s Rule ………………………………………………………………………………………………….. 423
23.7 Time-Variant Reliability ……………………………………………………………………………………………. 424
23.8 Reliability Updating ………………………………………………………………………………………………….. 425
23.9 Target Probability …………………………………………………………………………………………………….. 426
23.9.1 General …………………………………………………………………………………………………………….. 426
23.9.2 Target Probability ………………………………………………………………………………………………. 426
23.9.3 Recommended Target Safety Indices for Ship Structures ………………………………………… 427
Software for Reliability Calculations …………………………………………………………………… 427
23.4 Component Reliability ……………………………………………………………………………………………….. 421
23.6.3 Feny Borges-Castanheta Model …………………………………………………………………………… 423
23.10
23.1 1 Numerical Examples …………………………………………………………………………………………. 427
Example 23.1 : Safety Index Calculation of a Ship Hull ……………………………………… 427
Example 23.2: p Safety Index Method …………………………………………………………….. 428
Example 23.3: Reliability Calculation of Series System …………………………………….. 429
Example 23.4: Reliability Calculation of Parallel System ………………………………….. 430
23.12 References ……………………………………………………………………………………………………….. 431
CHAPTER 24 RANDOM VARIABLES AND UNCERTAINTY ANALYSIS ………………………. 433
23.1 1.1
23.1 1.2
23.1 1.3
23.1 I . 4
24.1 Introduction …………………………………………………………………………………………………………….. 433
24.2 Random Variables ……………………………………………………………………………………………………. 433
24.2.1 General …………………………………………………………………………………………………………….. 433
24.2.3 Probabilistic Distributions …………………………………………………………………………………… 434
24.2.2 Statistical Descriptions ……………………………………………………………………………………….. 433
mi Contents
24.3 Uncertainty Analysis ………………………………………………………………………………………………… 436
24.3.1 Uncertainty Classification …………………………………………………………………………………… 436
24.3.2 Uncertainty Modeling ………………………………………………………………………………………… 437
24.5 Uncertainty in Ship Structural Design …………………………………………………………………………. 438
24.4 Selection of Distribution Functions …………………………………………………………………………….. 438
24.5.1 General …………………………………………………………………………………………………………….. 438
24.5.2 Uncertainties in Loads Acting on Ships ………………………………………………………………… 439
24.5.3 Uncertainties in Ship Structural Capacity ……………………………………………………………… 440
24.6 References ………………………………………………………………………………………………………………. 441
CHAPTER 25 RELIABILITY OF SHIP STRUCTURES ……………………………………………………. 443
25.1 General ……………………………………………………………………………………………………………………. 443
25.2 Closed Form Method for Hull Girder Reliability ………………………………………………………….. 444
25.3 Load Effects and Load Combination …………………………………………………………………………… 445
25.4 Procedure for Reliability Analysis of Ship Structures ……………………………………………………. 448
25.4.1 General …………………………………………………………………………………………………………….. 448
25.4.2 Response Surface Method …………………………………………………………………………………… 448
25.5 Time-Variant Reliability Assessment of FPSO Hull Girders ………………………………………….. 450
25.5.1 Load Combination Factors ………………………………………………………………………………….. 452
25.5.2 Time-Variant Reliability Assessment …………………………………………………………………… 454
25.5.3 Conclusions ………………………………………………………………………………………………………. 459
25.6 References ………………………………………………………………………………………………………………. 459
CHAPTER 26 RELIABILITY-BASED DESIGN AND CODE CALIBRATION ………………….. 463
26.1 General ……………………………………………………………………………………………………………………. 463
26.2 General Design Principles …………………………………………………………………………………………. 463
26.2.1 Concept of Safety Factors …………………………………………………………………………………… 463
26.2.2 Allowable Stress Design …………………………………………………………………………………….. 463
26.2.3 Load and Resistance Factored Design ………………………………………………………………….. 464
26.2.4 Plastic Design ……………………………………………………………………………………………………. 465
26.2.5 Limit State Design (LSD) …………………………………………………………………………………… 465
26.2.6 Life Cycle Cost Design ………………………………………………………………………………………. 465
26.3 Reliability-Based Design …………………………………………………………………………………………… 466
26.3.1 General …………………………………………………………………………………………………………….. 466
26.3.2 Application of Reliability Methods to ASD Format ……………………………………………….. 467
26.4 Reliability-Based Code Calibrations …………………………………………………………………………… 468
26.4.1 General …………………………………………………………………………………………………………….. 468
26.4.2 Code Calibration Principles ………………………………………………………………………………… 468
26.4.3 Code Calibration Procedure ………………………………………………………………………………… 469
26.4.4 Simple Example of Code Calibration ……………………………………………………………………. 469
26.5 Numerical Example for Tubular Structure …………………………………………………………………… 471
26.5.1 Case Description ……………………………………………………………………………………………….. 471
26.5.2 Design Equations ………………………………………………………………………………………………. 471
26.5.3 Limit State Function (LSF) …………………………………………………………………………………. 472
26.5.4 Uncertainty Modeling ………………………………………………………………………………………… 473
26.5.5 Target Safely Levels ………………………………………………………………………………………….. 474
26.5.6 Calibration of Safety Factors ……………………………………………………………………………….. 475
26.6 Numerical Example for Hull Girder Collapse of FPSOs ………………………………………………… 476
26.7 References ………………………………………………………………………………………………………………. 479
CHAPTER 27 FATIGUE RELIABILITY …………………………………………………………………………… 481
27.1 Introduction …………………………………………………………………………………………………………….. 481
27.2 Uncertainty in Fatigue Stress Model …………………………………………………………………………… 481
Contents xvii
27.2. I Stress Modeling …………………………………………………………………………………………………. 481
27.2.2 Stress Modeling Error ………………………………………………………………………………………… 482
27.3 Fatigue Reliability Models ………………………………………………………………………………………… 483
27.3.1 Introduction ………………………………………………………………………………………………………. 483
27.3.2 Fatigue Reliability – S-N Approach ……………………………………………………………………… 484
27.3.3 Fatigue Reliability – Fracture Mechanics (FM) Approach ……………………………………….. 484
27.3.4 Simplified Fatigue Reliability Model – Lognormal Format ……………………………………… 487
27.4 Calibration of FM Model by S-N Approach …………………………………………………………………. 488
27.5 Fatigue Reliability Application . Fatigue Safety Check …………………………………………………. 489
27.5.1 Target Safety Index for Fatigue …………………………………………………………………………… 489
27.5.2 Partial Safety Factors …………………………………………………………………………………………. 489
27.6 Numerical Examples …………………………………………………………………………………………………. 490
27.6.1 Example 27.1 : Fatigue Reliability Based on Simple S-N Approach ………………………….. 490
27.6.2 Example 27.2: Fatigue Reliability of Large Aluminum Catamaran …………………………… 491
27.7 References ………………………………………………………………………………………………………………. 496
CHAPTER 28 PROBABILITY AND RISK BASED INSPECTION PLANNING …………………. 497
28.1 Introduction …………………………………………………………………………………………………………….. 497
28.2 Concepts for Risk Based Inspection Planning ………………………………………………………………. 497
28.3 Reliability Updating Theory for Probability-Based Inspection Planning ………………………….. 500
28.4 Risk Based Inspection Examples ………………………………………………………………………………… 502
28.5 Risk Based ‘Optimum’ Inspection ………………………………………………………………………………. 506
28.6 References ………………………………………………………………………………………………………………. 512
28.3.1 General …………………………………………………………………………………………………………….. 500
28.3.2 Inspection Planning for Fatigue Damage ………………………………………………………………. 500
Part V: Risk Assessment
CHAPTER 29 RISK ASSESSMENT METHODOLOGY ……………………………………………………. 515
29.1 Introduction …………………………………………………………………………………………………………….. 515
29.1.1 Health, Safety and Environment Protection …………………………………………………………… 515
29.1.2 Overview of Risk Assessment ……………………………………………………………………………… 515
29.1.3 Planning of Risk Analysis …………………………………………………………………………………… 516
29.1.4 System Description ……………………………………………………………………………………………. 517
29.1.5 Hazard Identification ………………………………………………………………………………………….. 517
29.1.6 Analysis of Causes and Frequency of Initiating Events …………………………………………… 518
29.1.7 Consequence and Escalation Analysis ………………………………………………………………….. 518
29.1.8 Risk Estimation …………………………………………………………………………………………………. 519
29.1.9 Risk Reducing Measures …………………………………………………………………………………….. 519
29.1.10 Emergency Preparedness ……………………………………………………………………………….. 520
29.1.1 1 Time-Variant Risk ………………………………………………………………………………………… 520
29.2 Risk Estimation ………………………………………………………………………………………………………… 520
29.2.1 Risk to Personnel ……………………………………………………………………………………………….. 520
29.2.2 Risk to Environment ………………………………………………………………………………………….. 522
29.2.3 Risk to Assets (Material Damage and Production LossDelay) ………………………………… 522
29.3 Risk Acceptance Criteria …………………………………………………………………………………………… 522
29.3.1 General …………………………………………………………………………………………………………….. 522
29.3.2 Risk Matrices ……………………………………………………………………………………………………. 523
29.3.3 ALARP-Principle ………………………………………………………………………………………………. 524
29.3.4 Comparison Criteria …………………………………………………………………………………………… 525
29.4 Using Risk Assessment to Determine Performance Standard …………………………………………. 525
29.4.1 General …………………………………………………………………………………………………………….. 525
xviii Contents
29.4.2 Risk-Based Fatigue Criteria for Critical Weld Details …………………………………………….. 526
29.4.3 Risk-Based Compliance Process for Engineering Systems ……………………………………… 526
29.5 References ………………………………………………………………………………………………………………. 527
CHAPTER 30 RISK ASSESSMENT APPLIED TO OFFSHORE STRUCTURES ………………. 529
30.1 Introduction …………………………………………………………………………………………………………….. 529
30.2 Collision Risk ………………………………………………………………………………………………………….. 530
30.2.1 Colliding Vessel Categories ………………………………………………………………………………… 530
30.2.2 Collision Frequency …………………………………………………………………………………………… 530
30.2.3 Collision Consequence ……………………………………………………………………………………….. 532
30.2.4 Collision Risk Reduction ……………………………………………………………………………………. 533
30.3 Explosion Risk …………………………………………………………………………………………………………. 533
30.3.2 Explosion Load Assessment ………………………………………………………………………………… 535
30.3.3 Explosion Consequence ……………………………………………………………………………………… 535
30.3.4 Explosion Risk Reduction …………………………………………………………………………………… 536
30.4 Fire Risk …………………………………………………………………………………………………………………. 538
30.4.1 Fire Frequency ………………………………………………………………………………………………….. 538
30.4.2 Fire Load and Consequence Assessment ………………………………………………………………. 539
30.4.3 Fire Risk Reduction ……………………………………………………………………………………………. 540
30.4.4 Guidance on Fire and Explosion Design ……………………………………………………………….. 541
30.5 Dropped Objects ………………………………………………………………………………………………………. 541
30.5.1 Frequency of Dropped Object Impact …………………………………………………………………… 541
30.5.2 Drop Object Impact Load Assessment ………………………………………………………………….. 543
30.5.3 Consequence of Dropped Object Impact ………………………………………………………………. 544
30.6.1 General …………………………………………………………………………………………………………….. 545
30.6.2 Hazard Identification ………………………………………………………………………………………….. 546
30.6.3 Risk Acceptance Criteria …………………………………………………………………………………….. 547
30.6.4 Risk Estimation and Reducing Measures ………………………………………………………………. 548
30.6.5 Comparative Risk Analysis …………………………………………………………………………………. 550
30.6.6 Risk Based Inspection ………………………………………………………………………………………… 551
30.7 Environmental Impact Assessment ……………………………………………………………………………… 552
30.8 References ………………………………………………………………………………………………………………. 553
CHAPTER 31 FORMAL SAFETY ASSESSMENT APPLIED TO SHIPPING INDUSTRY … 555
3 1.1 Introduction …………………………………………………………………………………………………………….. 555
31.2 Overview of Formal Safety Assessment ………………………………………………………………………. 556
3 1.3 Functional Components of Formal Safety Assessment ………………………………………………….. 557
3 1.3.1 System Definition ………………………………………………………………………………………………. 557
31.3.2 Hazard Identification ………………………………………………………………………………………….. 559
3 1.3.3 Frequency Analysis of Ship Accidents …………………………………………………………………. 562
31.3.4 Consequence of Ship Accidents …………………………………………………………………………… 563
31.3.5 Risk Evaluation …………………………………………………………………………………………………. 564
3 1.3.6 Risk Control and Cost-Benefit Analysis ……………………………………………………………….. 564
3 1.4 Human and Organizational Factors in FSA ………………………………………………………………….. 565
31.5 An Example Application to Ship’s Fuel Systems ………………………………………………………….. 565
31.6 Concerns Regarding the Use of FSA in Shipping …………………………………………………………. 566
31.7 References ………………………………………………………………………………………………………………. 567
CHAPTER 32 ECONOMIC RISK ASSESSMENT FOR FIELD DEVELOPMENT …………….. 569
32.1 Introduction …………………………………………………………………………………………………………….. 569
32.1.1 Field Development Phases ………………………………………………………………………………….. 569
30.3.1 Explosion Frequency ………………………………………………………………………………………….. 534
30.6 Case Study – Risk Assessment of Floating Production Systems ……………………………………… 545
Contents XiX
32.1.2 Background of Economic Evaluation …………………………………………………………………… 570
32.1.3 Quantitative Economic Risk Assessment ………………………………………………………………. 570
32.2 Decision Criteria and Limit State Functions …………………………………………………………………. 571
32.2.1 Decision and Decision Criteria ……………………………………………………………………………. 571
32.2.2 Limit State Functions ………………………………………..
32.3 Economic Risk Modeling ………………………………………………………………………………………….. 572
32.3.1 Cost Variable Modeling ……………………………………………………………………………………… 572
32.3.2 Income Variable Modeling ………………………………………………………………………………….. 573
32.3.3 Failure Probability Calculation ……
32.4 Results Evaluation ……………………………
32.4.1 Importance and Omission Factors ..
32.4.3 Contingency Factors …………………..
……………………………………… 575
……………………………………… 575
……………………………………… 576
32.5 References ………………………………………………………………………………………………………………. 576
CHAPTER 33 HUMAN RELIABILITY ASSESSMENT …………………………………………………….. 579
33.1 Introduction …………………………………………………………………………………………………………….. 579
33.2 Human Error Identification ………………………………………………………………………………………… 580
33.2.1 Problem Definition …………………………………………………………………………………………….. 580
33.2.2 Task Analysis ……………………………………………………………………………………………………. 580
33.2.3 Human Error Identification …………………………………………………………………………………. 581
33.2.4 Representation …………………………………………………………………………………………………… 582
33.3 Human Error Analysis ………………………………………………………………………………………………. 582
33.3.1 Human Error Quantification ………………………………………………………………………………… 582
33.3.2 Impact Assessment …………………………………………………………………………………………….. 582
33.4 Human Error Reduction …………………………………………………………………………………………….. 583
33.4.1 Error Reduction …………………………………………………………………………………………………. 583
33.4.2 Documentation and Quality Assurance …………………………………………………………………. 583
33.5 Ergonomics Applied to Design of Marine Systems ……………………………………………………….. 583
33.6 Quality Assurance and Quality Control (QNQC) …………………………………………………………. 584
33.7 Human & Organizational Factors in Offshore Structures ………………………………………………. 585
33.7.1 General …………………………………………………………………………………………………………….. 585
33.7.2 Reducing Human & Organizational Errors in Design ……………………………………………… 586
CHAPTER 34 RISK CENTERED MAINTENANCE ………………………………………………………….. 589
34.1 Introduction …………………………………………………………………………………………………………….. 589
34.1 . 1 General …………………………………………………………………………………………………………….. 589
34.1.2 Application ……………………………………………………………………………………………………….. 590
34.1.3 RCM History …………………………………………………………………………………………………….. 591
34.2 Preliminary Risk Analysis (PRA) ……………………………………………………………………………….. 592
34.2.1 Purpose …………………………………………………………………………………………………………….. 592
34.2.2 PRA Procedure ………………………………………………………………………………………………….. 592
34.3 RCM Process …………………………………………………………………………………………………………… 594
34.3.1 Introduction ………. …………………………………………………………………………………………. 594
34.3.2 RCM Analysis Procedures ………………………………………………………………………………….. 594
34.3.3 Risk-Centered Maintenance (Risk-CM) ………………………………………………………………… 601
34.3.4 RCM Process – Continuous Improvement of Maintenance Strategy …………………………. 602
34.4 References ………………………………………………………………………………………………………………. 602
SUBJECT INDEX ……………………………………………………………………………………………………………… 603
JOURNAL AND CONFERENCE PROCEEDINGS FREQUENTLY CITED ………………………. 607

Post Disclaimer

The information contained in this post is for general information purposes only. The information is provided by Marine Structural Design and while we endeavour to keep the information up to date and correct, we make no representations or warranties of any kind, express or implied, about the completeness, accuracy, reliability, suitability or availability with respect to the website or the information, products, services, or related graphics contained on the post for any purpose.

You might also enjoy:

Leave A Comment

Your email address will not be published. Required fields are marked *