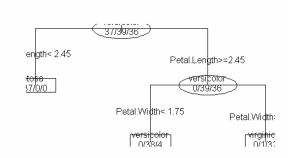
Home Work 1 Report Data Mining and Machine Learning By: R95922173 行妮

The goal of HW: Get the experience how to classify data to be training data and testing data in R environment. Find a package to construct tree from training data and try to construct tree and then predict the class label for testing data and analyze the result.

Procedure that I have done:

- 1. Download R from http://cran.csie.ntu.edu.tw/mirror (R-2.4.1-win32.exe)
- 2. Install it in windows platform → double click on the icon and follow the instruction
- 3. Create working directory at "D:\CSIE\2nd semester\data mining\R_work_dir". The working directory is the directory from which Rgui or Rterm was launched, unless a shortcut was used when it is given by the `Start in' field of the shortcut's properties.
- 4. Right click shortcut in desktop and choose properties, change the 'Start in' to "D:\CSIE\2nd semester\data mining\R_work_dir".
- 5. For English language write LANGUAGE=en at the end of the Target field (*after* any final double quote).
- 6. Check if installation is not corrupted with run "C:\Program Files\R\R-2.4.1\bin\mdcheck.exe". The result is "3252 files changed".
- 7. Download "An Introduction to R" as manual for R
- 8. Read "An Introduction to R"
- 9. Load package "rpart" and do training and testing (detail process in next section)

Package to construct decision tree: rpart package


Step by step training and testing with iris data using rpart package:

- 1. Load iris data
 - > data(iris)
- 2. Load rpart package, use menu packages -> load package -> select rpart or use command:
 - > library(rpat)
- 3. Select a training set randomly (75%) and testing data (25%) from iris data # calculate the number of data
 - > x <- nrow(iris)
 - > training <- sort (sample (1:x, floor (3*x/4)))
 - # training data will be:
 - > training_iris <- iris[training,]
 - # to get the test data negate the indices:
 - > testing_iris <- iris[-training,]
- 4. Construct a tree for the training data
 - > iris_Ctree<rpart(Species ~.,data=iris, subset=training, method="class", parms=list(split="information"))

Note: formula all, data = iris, subset = training (indices of training set), method="class" (classification tree)

Plot and label classification tree

- > plot(iris_Ctree,uniform=TRUE,compress=TRUE,margin=0)
- > text(iris_Ctree,use.n=TRUE,all=TRUE,fancy=TRUE)

5. Get the prediction, use testing data (use predict for linear model (lm)) > iris_predict<-predict(iris_Ctree,newdata=testing_iris,type="class")

result:

> iris_predict							
2	5	12	16	23	25	26	
setosa	setosa	setosa	setosa	setosa	setosa	setosa	
28	30	31	41	49	50	51	
setosa	setosa	setosa	setosa	setosa	setosa	versicolor	
55	59	63	70	79	80	82	
versicolor	versicolor	versicolor	versicolor	versicolor	versicolor	versicolor	
93	95	98	103	106	111	118	
versicolor	versicolor	versicolor	virginica	virginica	virginica	virginica	
121	124	129	132	135	138	143	
virginica	virginica	virginica	virginica	versicolor	virginica	virginica	
146	147	149					
virginica	virginica	virginica					
Levels: setosa versicolor virginica							
> summary(testing iris	3)					
Sepal.Le	ngth Sepa	al.Width	Petal.Leng	th Petal	.Width	Species	
Min. :4	.600 Min.	:2.200	Min. :1.0	00 Min.	:0.200 se	etosa :13	
1st Qu.:5	.050 1st (Qu.:2.725	1st Qu.:1.6	00 1st Qu	.:0.200 v	ersicolor:11	
Median:5	.900 Media	an :3.000	Median:4.2	50 Median	:1.300 v:	irginica:14	
Mean :5	.926 Mean	:3.084	Mean :3.7	89 Mean	:1.176		
3rd Qu.:6	.475 3rd (Qu.:3.400	3rd Qu.:5.1	75 3rd Qu	.:1.900		
Max. :7	.900 Max.	:4.400	Max. :6.7	00 Max.	:2.300		
> summary(iris_predict)							
setosa versicolor virginica							
13	12	13					

6. Analysis: After I run and try to random training and testing data more than once, the average of testing accuracy is about 97%. Like in this sample analysis, i can conclude that from 38 testing data only 37 data that correct, it means the accuracy is about 37/38*100 = 97%.

	Data for testing (testing_iris)	Prediction (iris_predict)
setosa	13	13
versicolor	11	12
virginica	14	13